Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2emission scenario until year 4000 AD
نویسندگان
چکیده
منابع مشابه
Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD
[1] A new model of global climate, ocean circulation, ecosystems, and biogeochemical cycling, including a fully coupled carbon cycle, is presented and evaluated. The model is consistent with multiple observational data sets from the past 50 years as well as with the observed warming of global surface air and sea temperatures during the last 150 years. It is applied to a simulation of the coming...
متن کاملClimate, carbon cycling, and deep-ocean ecosystems.
Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature i...
متن کاملChanges in Snowmelt Runoff Timing in Western North America under a ‘business as Usual’ Climate Change Scenario
Spring snowmelt is the most important contribution of many rivers in western North America. If climate changes, this contribution may change. A shift in the timing of springtime snowmelt towards earlier in the year already is observed during 1948–2000 in many western rivers. Streamflow timing changes for the 1995–2099 period are projected using regression relations between observed streamflow-t...
متن کاملA Mathematical Model for Indian Ocean Circulation in Spherical Coordinate
In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews processes in which the IO is, or appears to be, actively involved. We begin the mathematical model with a pattern for summer monsoon winds. Three dimensional temperature and velocity fields are calculated analytically for the ocean forced by ...
متن کاملFuture reef decalcification under a business-as-usual CO2 emission scenario.
Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Global Biogeochemical Cycles
سال: 2008
ISSN: 0886-6236
DOI: 10.1029/2007gb002953